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Notation for Local Fields

Let K be a local field. Then K has a discrete valuation
vK : K → Z ∪ {∞}.

Associated to K we have the following:

OK = {x ∈ K : vK (x) ≥ 0} = ring of integers of K

MK = {x ∈ K : vK (x) ≥ 1} = maximal ideal of OK .

Say that K = OK/MK is the residue field of K . A uniformizer of K is
πK ∈ K such that vK (πK ) = 1.

We will be considering Galois extensions L/K of degree pn, where
p = char(K ).

In most cases we will assume that L/K is totally ramified. When this holds
we have L = K and |Z : vL(K×)| = pn. In addition, we choose πL so that
NL/K (πL) ≡ πK (mod M2

K ).



Higher Ramification Theory

Let L/K be a Galois extension of degree pn. For x ∈ R with x ≥ 0 define

Gx = {σ ∈ G : vL(σ(α)− α) ≥ x + 1 for all α ∈ OL}.

Then Gx is a subgroup of G . In fact Gx E G .

Let b ∈ R, b ≥ 0. Say b is a lower ramification break of L/K if Gb 6= Gb+ε
for all ε > 0. We have b ∈ Z in this case.

If b is a lower ramification break of L/K we can identify Gb/Gb+1 with a
subgroup of Mb

L/M
b+1
L . Hence Gb/Gb+1 is an elementary abelian

p-group.

We define the multiplicity of the lower break b to be the Fp-dimension of
Gb/Gb+1.

Thus the lower breaks of L/K form a nondecreasing sequence
b1 ≤ b2 ≤ · · · ≤ bn of integers.



Even Higher Ramification
Let H ≤ G and set M = LH . Then for x ≥ 0 we get Hx = H ∩ Gx .

Suppose H E G . How to determine (G/H)x ?

Define a function φL/K : R≥0 → R≥0 by

φL/K (x) =
∫ x

0

dt
|G0 : Gt |

.

Then φL/K is one-to-one and onto, so we may define ψL/K : R≥0 → R≥0
by ψL/K = φ−1

L/K .

Define the upper numbering on the higher ramification groups of L/K by
Gx = GψL/K (x) for x ≥ 0. Then we get

ψL/K (x) =
∫ x

0
|G0 : G t | dt.

Say u ≥ 0 is an upper ramification break of L/K if Gu 6= Gu+ε for all
ε > 0. This is equivalent to ψL/K (u) being a lower ramification break.



Herbrand’s Theorem
Theorem
Let M/K be a Galois subextension of L/K. Set G = Gal(L/K ) and
H = Gal(L/M).

(Herbrand’s Theorem) For y ≥ 0 we have (G/H)y = Gy H/H.
(Tower Rule) Let M/K be a Galois subextension of L/K. Then
φL/K = φM/K ◦ φL/M and ψL/K = ψL/M ◦ ψM/K .

It follows from Herbrand’s theorem that if u is an upper ramification break
of M/K then u is also an upper ramification break of L/K .

Let H E G and set M = LH . Let x ≥ 0 and set y = φM/K (x). By the
tower rule we get

ψL/K (y) = ψL/M(ψM/K (y)) = ψL/M(x).

Hence by Herbrand’s Theorem we deduce that

(G/H)x = (G/H)y = Gy H/H = GψL/K (y)H/H = GψL/M(x)H/H.



A Ramification Theory Lemma
Lemma
Let L/K be a Galois extension of degree pn and set G = Gal(L/K ). Let
E/K be a Cp-extension such that [LE : L] = [E : K ] = p. Let v be the
ramification break of E/K and let v ′ be the ramification break of LE/L.
Then v ′ ≤ ψL/K (v), with equality if v is not an upper ramification break
of L/K.
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The Hasse-Arf Theorem

Theorem (Hasse-Arf)
Let L/K be an abelian extension. Then the upper ramification breaks of
L/K are integers.

Suppose K is finite and L/K is an abelian extension. Then local class field
theory gives an onto homomorphism ωL/K : K× → G = Gal(L/K ).

For x > 0 define

Ux
K = {α ∈ OK : vK (α− 1) ≥ x}.

Then for x > 0 we have ωL/K (Ux
K ) = Gx .



A Question

Let G be a group of order pn and let

{1} = G0 ≤ G1 ≤ · · · ≤ Gn−1 ≤ Gn = G

be normal subgroups of G such that |Gi | = pi for 0 ≤ i ≤ n.

Consider the set of all totally ramified Galois extensions L/K with
Gal(L/K ) ∼= G such that every ramification subgroup of Gal(L/K ) is equal
to Gi for some i .

We get a tower of fields L0 ⊂ L1 ⊂ · · · ⊂ Ln, with Li = LGn−i .

Question: What are the possibilities for the upper ramification breaks
u1 ≤ u2 ≤ · · · ≤ un of such extensions?

Miki and Maus determined the possibilities for the upper breaks when
G = Cpn is cyclic.



Embedding Problems

Let L/K be a totally ramified Galois extension whose Galois group
G = Gal(L/K ) has order pn.

Let G̃ be an extension of the group G by Cp, and let M1,M2 be two field
extensions of L which solve the associated embedding problem.

Thus for i = 1, 2, Mi/K is a Galois extension and there is an isomorphism
of exact sequences

1−−−→Gal(Mi/L)−−−→Gal(Mi/K )−−−→Gal(L/K )−−−→ 1y y ‖

1−−−→ Cp −−−→ G̃ −−−→ G −−−→ 1.

(1)



Sets of Upper Breaks
Let eK = vK (p) denote the absolute ramification index of K ; thus eK =∞
if char(K ) = p. Set

B′K =
{

b ∈ N : b < peK
p − 1 , p - b

}
.

Let BK denote the set of all possible ramification breaks of Cp-extensions
E/K .

If K does not contain a primitive pth root of unity then

BK = B′K ∪ {−1},

while if K does contain a primitive pth root of unity then

BK = B′K ∪
{
−1, peK

p − 1

}
.

In particular, if char(K ) = p then BK = {b ∈ N : p - b} ∪ {−1}.



Main Theorem

Theorem
Let b(i) be the unique (upper and lower) ramification break of Mi/L. Then
b(i) is a lower break of Mi/K, so we may let
u(i) = φMi/K (b(i)) = φL/K (b(i)) be the corresponding upper ramification
break of Mi/K. Assume that

u(i) is the largest upper ramification break of Mi/K for i = 1, 2.
u(1) 6∈ BK .

Then u(2) ≥ u(1).

Some consequences:
If u(2) > u(1) then u(2) ∈ BK . In particular, if u(2) > u(1) then u(2) is
an integer.
Suppose char(K ) = p. Then there are finitely many solutions M1/K
to the embedding problem such that u(1) is not an integer, and
infinitely many solutions such that u(1) is an integer.



Proof of Main Theorem (First Step)
We first note that if the extension G̃ of G by Cp is split then there is a
Galois extension F/K with Gal(F/K ) ∼= Cp such that LF = M1 and
L ∩ F = K .
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Let v ∈ BK be the ramification break of F/K . Then v is an upper
ramification break of M1/K , so we have v ≤ u(1).

By the lemma we have b(1) ≤ ψL/K (v), and hence u(1) = φL/K (b(1)) ≤ v .

It follows that u(1) = v ∈ BK , a contradiction.

Therefore G̃ is a nonsplit extension of G by Cp.



Proof of Main Theorem (continued)
Let N = M1M2. Then N/K is Galois. Set Γ = Gal(N/K ) and
Hi = Gal(N/Mi ) for i = 1, 2. Then Γ/Hi ∼= Gal(Mi/K ) and
Γ/H1H2 ∼= Gal(L/K ) = G .
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A Bit of Group Theory

It follows from (1) that there is an isomorphism ψ : Γ/H1 → Γ/H2 which
induces the identity on Γ/H1H2.

Hence for x ∈ Γ there is unique δ(x) ∈ H1 such that ψ(xH1) = xδ(x)H2.

Let x , y ∈ Γ. Since H1 is contained in the center of the p-group Γ we get

ψ(xyH1) = ψ(xH1)ψ(yH1)
= xδ(x)H2 · yδ(y)H2

= xyδ(x)δ(y)H2.

Hence δ(xy) = δ(x)δ(y), so δ : Γ→ H1 is a homomorphism.

If x ∈ H1 then δ(x) = x−1. Therefore H1 6⊂ ker(δ). It follows that δ is
nontrivial, and hence onto.

Therefore ker(δ) is a normal subgroup of Γ with index p.



Proof of the Main Theorem (continued)

Let F be the subfield of N fixed by ker(δ).

Then Gal(F/K ) ∼= Cp, Also, Mi F = N and Mi ∩ F = K for i = 1, 2.

Let v ∈ N be the unique (upper and lower) ramification break of F/K .

Suppose v > u(1). Then by the maximality of u(1) we see that v is not an
upper ramification break of L/K .

By the lemma we deduce that ψL/K (v) is an upper break of LF/L.

Therefore the (distinct) upper breaks of N/L are ψL/K (v) and
b(1) = ψL/K (u(1)).

Since ψL/K (v) > ψL/K (u(1)) and M2 6= M1, the upper break of M2/L is
ψL/K (v). Hence u(2) = v > u(1).



Completing the Proof of the Main Theorem

Suppose v ≤ u(1). Then v < u(1) since u(1) 6∈ BK .

Hence by the lemma the upper ramification break of LF/L is less than
ψL/K (u(1)) = b(1).

It follows that the ramification break of M2/L is b(1), so we get
u(2) = φL/K (b(1)) = u(1).



An Example

Let K be a local field of characteristic p and let L/K be a totally ramified
cyclic extension of degree p − 1.

Let πL, πK be uniformizers for K , L such that πp−1
L = πK .

Let d > 0 with p - d and let Md be the extension of L generated by the
roots of X p − X − π−d

L .

Then Md/K is a Galois extension of degree p(p − 1) with upper
ramification breaks 0, d/(p − 1).

Therefore the hypothesis that G is a p-group in our main Theorem is
necessary.



Another Theorem

Theorem
Let K be a local field and let L/K be a finite totally ramified Galois
extension of degree pn. Assume that G = Gal(L/K ) has order pn and let
G̃ be an extension of G by Cp. Let M/L be a Cp-extension which solves
the embedding problem associated to this group extension. Let w be the
ramification break of M/L and let v = φM/K (w) = φL/K (w) be the upper
ramification break of M/K that is associated to w. Assume that

w is the smallest ramification break associated to a solution of the
embedding problem.
v is not an upper ramification break of L/K.

Then
v 6∈ B′K =

{
b ∈ N : b < peK

p − 1 , p - b
}
.



An Invariant for Cp-extensions
Let E/K be a ramified Cp-extension with ramification break b. Let v be
an integer with v ≤ b and let σ ∈ Gal(L/K ). We define an invariant
λv (E/K , σ) ∈ K as follows:

Let πE be a uniformizer for E such that NE/K (πE ) ≡ πK (mod MK ).
Then there is c ∈ OK such that

σ(πE ) ≡ πE + cπv+1
E (mod Mv+2

E ).

Define λv (E/K , σ) = c +MK ∈ OK/MK = K . Then λv (E/K , σ) does
not depend on the choices of πE and c.

Proposition
Let v ∈ B′K and c ∈ K. Then there is a ramified Cp-extension E/K with
ramification break b ≥ v and a generator σ for Gal(E/K ) such that
λv (E/K , σ) = c.

Proof: Artin-Schreier plus MacKenzie-Whaples.



Shifting a Cp-extension
Recall that L/K is a totally ramified Galois extension of degree pn, with
G = Gal(L/K ).

Let v ∈ B′K be such that v is not an upper ramification break of L/K and
set w = ψL/K (v).

Let E/K be a Cp-extension with ramification break v . Then LE/L is a
Cp-extension with ramification break w (by the lemma).

Let σ be a generator for Gal(E/K ) and let σ̃ be the unique element of
Gal(LE/L) such that σ̃|E = σ.
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λ-invariants in Extensions

Proposition
Let v ∈ B′K be such that v is not an upper ramification break of L/K and
set w = ψL/K (v). There is a group isomorphism ρv

L/K : (K ,+)→ (K ,+)
such that for every pair (E/K , σ) consisting of a Cp-extension E/K with
ramification break v and a generator σ for Gal(E/K ) we have

ρv
L/K (λv (E/K , σ)) = λw (LE/L, σ̃).

Proof: Suppose L/K is a Cp-extension with ramification break u 6= v .
Then there is a ∈ OK such that for all c ∈ OE we have

NLE/E (πLE + cπw+1
LE ) ≡ πE + cpπv+1

E (mod Mv+2
E ) if v < u,

≡ πE + caπv+1
E (mod Mv+2

E ) if u < v ,

which proves the claim. The general case now follows by induction.



Outline of the Proof of the Other Theorem
Recall that M/L is a solution to the embedding problem associated to the
extension G̃ of G = Gal(L/K ) by Cp, and that w = ψL/K (v) is the
ramification break of M/L.

Suppose w is the smallest break associated to a solution of the embedding
problem, v is not an upper ramification break of L/K , and v ∈ B′K .

Let τ be a generator for Gal(M/L) ∼= Cp. By the preceding proposition
there is a Cp-extension E/K with ramification break v and a generator σ
for Gal(E/K ) such that

λw (LE/L, σ̃) = λw (M/L, τ).

Then ME/L is a Cp × Cp-extension with two distinct upper ramification
breaks x ,w with x < w .

Hence there is a Cp-subextension M ′/L of ME/L with ramification break x
which solves the embedding problem. This contradicts the minimality of v .


